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Abstract-The theoretical dependence of heat-transfer coefficient on max~um drop size [l J is incorpor- 
ated in a new calculation giving the dependence of sweeping frequency and heat-transfer coefficient on 
distance down the condensing surface. Both results are in satisfactory agreement with earlier observations. 
The height-dependence of the heat-transfer coefficient is shown to be extremely weak. It is also shown 
that the nucleation site density is deducible from an equation for the distribution of drop sizes [l] and 
that the values obtained are in satisfactory agreement with optical and electron microscope measurements. 

NOMENCLATURE 

width of swept track at distance L” from top 
of surface; 
width of swept track at z = z. ; 

quantities independent of z 
[see equations (8), (11) and (13)]; 

local gravitational acceleration; 

heat-transfer coefficient; 
heat-transfer coefficient at distance z from 

top of surface; 
heat-transfer coefficient at z = zO ; 
specific enthalpy of vapour-liquid phase 
change ; 
a constant; 

base area/surface area for a drop; 

K2slp@;,/2p~; 
a constant; 
thickness of promoter layer; 
constant in equation (1); 

distribution function; number of drops in 
size range r, r + dr divided by dr; 
number of falling drops per (time. width) 

erossing a horizontal line on the surface; 
number of adhering drops per area in size 
range ?. rP ; 
heat-transfer rate through drop divided by 
base area : 

& evaluated at T = T1 ; 
specific ideal-gas constant; 
radius of drop; 
minimum drop radius, 25v~T/~~~AT; 

vapour saturation temperature for pressure 
of 1 atm; 

volume condensation rate per area; 

valueofVatz=zo; 
average value of V, in the range 0 < z < zo; 

value of V at distance z from top of surface; 
volume of a failing drop at distance 2 from 

top of surface; 
specific volume of liquid phase; 
specific volume of vapour phase; 

distance from top of condensing surface; 
distance from top of condensing surface 
above which falling drops originate. 

Greek symbols 

fraction of area covered by drops with radius 
greater than r; 
ratio of principal specific heat capacities 

(c,/c~) for vapour: 
vapour-to-surface temperature difference; 
thermal conductivity of liquid phase; 

thermal conductivity of promoter layer; 
number of condensation sites per area; 

sweeping frequency ; 
sweeping frequency at := so; 

sweeping frequency at distance I from top 
of surface; 
density of liquid phase; 
density of vapour phase; 
liquid-vapour interfacial tension. 

INTRODUCTION AND OUTLINE OF THEORY 

A THEORY of heat transfer by dropwise condensation 
[i], models the dropwise condensation process as a 
steady distribution of non-growing, non-coalescing 
drops. The heat-transfer rate through a single drop is 

effective maximum radius of adhering drop; calculated and the average heat flux found by inte- 
radius of largest non-sliding drop ; gration over all drops. The equation used for the 
mean radius of largest primary drop; distribution of drop sizes was 
value of F at distance z from top of surface; 
temperature (thermodynamic temperature) 

c( = 1 - (r/,lj)m (1) 

of vapour; where m is a constant. Equation (1) has the property 
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that it gives zero area covered by drops greater than i 
and complete coverage as the radius of the smallest 
drop tends to zero. 

The equation for the mean heat flux through a single 
drop may be written 

A*-%T 

a = Kl(~)+Kfg)+(sJ t2) 
The numerator is the available vapour-to-surface tem- 

perature difference less the amount by which the vapour 
must be sub-cooled below its normal “saturation” 

temperature in order that condensation may take place 
on the convex liquid surface. The denominator is an 

approximate representation of the combined resist- 
ances of the liquid, the vapour-liquid interface and the 
promoter layer. The constant Ki is associated with 
conduction in the liquid. K$ is the ratio of the base 

area to that of the curved surface of a drop. In the 
original theory [l], the last two terms in the denomi- 

nator of equation (2) were combined so as to generate 
a promoter-dependent constant Kzl whose value also 
depends on the drop shape. When the promoter resist- 
ance is negligible K2i is equal to Kf. 

Using equations (1) and (2) and integrating between 
r’ and ?, the total heat flux was found as a function 

of vapour-to-surface temperature difference. f. the 

mean radius of the largest adherent drop, was estimated 
on grounds of dimensional analysis by 

i = K3{cr/g(p/-Ps)) “l. (3) 

The constants K1, Kzl. K3 and ~1 were known to 
be of order unity but their actual values were chosen 

so as best to fit the available heat-transfer data, i.e. 
heat flux-temperature difference measurements for 
steam at near-atmospheric pressures. This has led to 
criticism of the theory and will be discussed briefly 
before turning to the present extension to include the 

effect of plate height. 
Firstly, it may be noted that the theory was sub- 

sequently found (when using the original values of the 
constants) to predict closely later measurements for 
lower steam pressures [2-51. Secondly, values close to 
those actually chosen, for three of the four constants. 
may be obtained with recourse to the heat flux- 
temperature difference measurements. In the case of 
the remaining (promoter-dependent) constant, a lower 
limit may be set (for the case where the promoter itself 
offers negligible thermal resistance) without reference 
to heat-transfer measurements. The values actually 
chosen [l] varied between this lower limit and some- 
what higher values according to promoter. 

Equation (1) has received support from photographic 
measurements [2,3,6] and from a theoretical study of 
the drop size distribution [7] which makes no appeal 
either to the heat-transfer theory or measurements. 
Both indicate ~1 = l/3. A crude model for conduction 
in the drop [S] gives for hemispherical drops K, 2 2/3. 
Visual observations for dropwise condensation of 
steam indicate F 5 1 mm, which gives K3 1 0.4. These 

values of m, K, and K3 are, in fact. those adopted 

in [l]. The constant Kzl depends on the promoter 
resistancet which, if negligible. gives Kz I = Kf. i.e. the 
ratio of the base area to the area of the curved surface. 
Since, in the case of water the drops are almost 

hemispherical, the lower bound for Kll is about l2. 
The values adopted in [l] varied from promoter to 
promoter in the range I,_ ,‘7 to about 3. Thus, had no 

attempt been made to include dependence of the heat 
transfer on promoter used. which is relatively small for 
“monolayer type” promoters. the theory would involve 

no constants whose values cannot be found indepen- 

dently of heat-transfer data. 

A more fundamental objection to the theory is its 
steady treatment of a highly non-steady process, In 
the real case the surface temperature is both non- 

uniform and, at any location, varies with time. Addi- 
tionally, in view of the high rate of coalescence between 
drops [9], it might be thought that the steady con- 
duction calculation for each drop could be seriously 
in error. 

Surface temperature variations arise from the fact 

that any given location plays different roles at different 
times. A small area is “bare” immediately after exposure 

caused by coalescence of a pair of drops, one of which. 
prior to coalescence, covered it. A short time later the 
same area will be covered with a large number of 
very small rapidly growing “primary” drops and some- 
what later, following many coalescences, by a smaller 

number of larger drops. This process continues with 
time. i.e. the sizes of the largest drops increase and 

their number decreases while smaller drops appear in 
the spaces between them, until the small area in 
question is either completely covered by one of its 

largest drops, or either covered or again rendered bare, 
by coalescence between larger neighbouring drops. A 
totally covered region will, at some later time. again 
become exposed due to movement of the covering 
drop. With a much lower frequency than that of the 
events described above, relatively large areas are swept 

from time to time by falling drops. 
The role played by any given location varies with 

great rapidity due to the close packing of drops of all 
sizes and consequent rapid re-distribution of conden- 
sate resulting from the high rate of coalescence. It 

would seem that the temperature of a small region of 
the surface would depend on the role it played at the 
time in question. In this case the surface temperature 
at any instant would be non-uniform and the tem- 
perature at any position would vary with time. 

The fact that the steady theory is apparently success- 
ful and that heat-transfer measurements do not depend 
significantly on the material of the condensing surface 
[lO]$ suggests that the temperature fluctuations and 

ir,/,$, might represent any resistance associated with the 
promoter i.e. not necessarily due to conduction in a thin 
layer. 

$A theoretical analysis of the effect of the thermal proper- 
ties of the surface has been given [ 1 t] and a recent report 
[12] has indicated that overall coefficients for dropwise 
condensation on tubes of different materials differed signifi- 
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non-uniformities are insignificant. It is possible that 

the frequency of the fluctuations associated with growth 

and coalescence is so high that the surface temperature 
at any position is essentially constant and hence 
uniform for the whole surface, while at the same time, 
the intermittent disturbances associated with “sweep- 
ing” occur with such low frequency as to have insig- 
nificant effect. 

Regarding the steady treatment of heat transfer 
through a single drop, it would seem that, following 
a coalescence, the temperature distribution in the 
newly-formed drop might differ radically from that 
associated with steady conduction, particularly after 

coalescence between drops of roughly equal size and 
in view of the fact that the time inverval between 
successive coalescences is very short. However, the 
time interval must be considered in relation to that 
during which two drops, upon contact, coalesce and 

the associated disturbances die away. That the time for 
coalescence is much shorter than that during which 
drops grow without coalescing, is illustrated by the 
fact that still photographs, showing several hundreds 

of drops, rarely (for a well-promoted surface) show 
drops in the process of coalescence, and also by the 
fact that successive frames of tine films show drops 

before and after coalescence. 
In the present work, it is first demonstrated that the 

theory [l] accurately predicts the effect of maximum 

drop size on the heat-transfer coefficient. Thus for a 
given vapour-to-surface temperature difference, the 
relationship between local maximum drop size and 
volume condensation rate is known. This relationship 

is used, together with certain simplifying assumptions 
and an equation relating local maximum drop size, 
local mean volume condensation rate per area and 

local sweeping frequency, based on the drop growth 
model [7], to determine the height-dependence of the 
sweeping frequency and hence of the heat-transfer 

coefficient. 
Finally it is shown that equation (1) can be used to 

estimate nucleation site densities. 

THE EFFECTIVE MAXIMUM DROP SIZE 

There is some doubt as to the precise meaning and 
hence the correct value of i which occurs in equation 

(1) and as the upper limit of the integral giving the 
total heat transfer. It has recently been pointed out [7] 
that drops grow in distinct “generations”. The largest 
drops, at a given location and at a given instant, are 
all of much the same size, and constitute the initial 
generation. In the spaces between these largest drops 

are significantly smaller drops, also of roughly equal 
size, of the next generation. A third generation of drops 
exists in the spaces between those of the second gen- 
eration and so on. Generations of drops may be clearly 

F‘ootnorr conrinued from p. 1364. 

cantly. Since these tubes were not given identical surface 
coatings, it may be that the observed variations between 
tubes were due to differences in promoter effectiveness on 
the different surfaces rather than to the thermal properties 
of the materials. 

identified in tine-films [9] and in a computer simulation 

[13]1 
The “effective maximum” drop radius F at a given 

location is thus seen to be the average radius of the 
largest generation immediately prior to sweeping. 
Using the computer simulation [7] of the growth of a 
generation of drops, the radius of the largest drop of 
a generation is found to be around 1.3 times the mean 
radius. Hence i is about r,,,/1.3 where Y,,, is the radius 
of the largest drop at the end of the growth cycle. 

Measurments have recently been made of the depen- 

dence of the steam-side heat-transfer coefficient on the 
maximum drop size [ 14-161. These results are shown 

in Fig. 1. The theory shows (see equation (30) of [1]) 
that the heat flux, and hence the heat-transfer coef- 
ficient for a given vapour-to-surface temperature differ- 
ence, varies as jm1/3. The theoretical dependence? of 

the heat-transfer coefficient on the effective maximum 
drop size (estimated as r,,Jl.3) is shown in Fig. 1. 

FALLING DROPS AND SWEEPING FREQUENCY 

Falling drops play a major role in determining the 

heat transfer, by sweeping vertical tracks clear of 
adherent drops. Also, being much larger than the 
adherent drops, the falling drops have virtually infinite 

heat-transfer resistance and effectively “blanket” part 
of the surface. Since their growth mechanism (by sweep- 
ing up adherent drops) is different, the falling drops 
are not included in the size distribution function for 

adherent drops. 
The dropwise condensation “cycle” comprises two 

parts: the “growth time” during which drops nucleate 

(on a newly-swept region), grow and coalesce; and 
the “sweeping time” during which the region re- 
mains covered by the falling drop. For any horizontal 
strip of the condensing surface, the fractional coverage 
by falling drops is, on average, equal to the ratio of 
the sweeping time to the total cycle period. The fact 
that the proportion of the total condensing area covered 

by falling drops is generally small [17] (only for 
extremely high condensation rates or for near-hori- 
zontal surfaces is this appreciable) indicates that the 

growth time is in general much larger than the sweeping 
time and that the “sweeping frequency” (reciprocal of 
total cycle period) in general approximates to the 

reciprocal of the growth time. 
The sweeping frequency, maximum drop size and 

heat-transfer coefficient depend on distance down the 
surface, surface inclination and vapour velocity. How- 
ever. for constant AT the quantities I’, F and h are 
related. Thus 

h cc f-‘/3 (4) 

as indicated by [l] and discussed above, and, as is 
shown later, 

ioc Vv-r. (5) 

tTaking AT = 2.3K (the mean of the experimental 
values r14-161) and Kzl = 2.155 (for the promoter oleic 
acid [I>). The-predicted values of h vary only slightly in 
the experimental range of AT (1.6-3.3 K). The slope of the 
theoretical line depends neither on AT nor K2,. 



1366 J. W. Rose 

A 

02/- ‘.weoL SURFACE METHOD 0 _ 

0 05 01 0.2 0.3 0‘4 0.6 08 1-O 1-5 

F/mm 

FIG. I. Dependence of heat-transfer coefficient on maximum drop size. Comparison of measurements 
[ 14-161 and theory [ 11. 

Hence, for constant AT, when h CC F/, 

h % vl!J. (6) 

In (5) and (6) v is strictly the reciprocal of the growth 
time and should be so taken for those extreme cases 
where coverage by falling drops is appreciable. 

EFFECT OF PLATE HEIGHT 

It might at first be thought that, since all of the 
condensate from upper parts of the surface must drain 

via the lower parts, the heat-transfer coefficient would 
decrease with distance down the plate. That this is not 
the case [ 1 S] is due to three factors: 

(a) Coverage by falling drops is in general small, and 
variations with height have- correspondingly 
small effect on the heat-transfer coefficient. 

Increased coverage due to growth of falling drops 
as they proceed down the surface is counteracted 
by the fact that the falling drops accelerate and 

consequently become more widely spaced. Alter- 
natively, a falling drop may, despite its increase 
in size, cover a lower region for a shorter time 
than it does a higher one. 
Since falling drops grow as they proceed down 
the surface, they sweep diverging tracks. Con- 

sequently. Iower regions are swept more fre- 
quently, and hence, from (6), the heat-transfer 
coefficient ittcrenses with distance down the 
surface. 

With the aid of certain simplifying assumptions, and 
for fixed vapour and surface temperatures, the vari- 
ation, with distance down the surface, resulting from 
(c) above, of the sweeping frequency and hence of the 
heat-transfer coefficient, may be calculated. 

Since the sweeping frequency increases with distance 
down the surface, only drops near to the top are able 
to reach the size at which they begin to fall. We shall 
assume that all falling drops originate within some 
short distance =a of the top of the surface. Thus for 

z > =a the number of drops per (time x width), II, 
crossing any horizontal line on the surface is indepen- 
dent of z. 

The local sweeping frequency, I’;, is given by 

I’; = nh, (7) 

where b, is the local width of the swept track. We 
assume also that a fatling drop retains its shape as it 
proceeds down the surface, i.e. falling drops have similar 

shapes at different heights. (This may be invalid for the 
lower parts of tall surfaces, when a falling drop may 
extend lengthwise into a streak whose width remains 
roughly constant. In this case the sweeping frequency, 
effective maximum drop size and heat-transfer coef- 
ficient would, in the absence of appreciable coverage 

by falling drops, remain constant with height.) 
With the above assumption, the volume of a falling 

drop, c, may be written in terms of its maximum 
width bZ : 

t’; = C’, l7: (8) 

where c1 is a constant shape factor for falling drops. 

For hemispherical falling drops cl = n/12. In the steady 
state, the total volume of condensate in the form of 
moving drops, crossing a horizontal line at distance 2 

from the top of the surface, is equal to the volume 
condensation rate on the region above, i.e. 

EC, = 
i= 

V:d; (9) 
0 

where V, is the local condensation rate per area. 
Thus from (8) and (9): 

b$=L V.d=. 
i‘; 

(IO) 
cl@*0 

Since we are considering a fixed value of AT, it follows 

from (4) that 
v. = C2;;‘r3 (11) 

where c2 is independent of Z. 
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Differentiating (10) and substituting for V, from (11): 

(12) 

On dimensional grounds one might expect: 

i, == c3 v:v;l 

where c3 is a constant. 

(13) 

Moreover equation (13) may also be obtained (see 

Appendices A and B) by using the drop growth 
model [7] to calculate the average volume of conden- 

sate on a given area immediately prior to sweeping, 
which, when multiplied by the local sweeping fre- 
quency, gives the local volume condensation rate. This 
calculation gives c3 = 2.6. From (7) (11) and (13): 

(14) 

Substituting for F, from (14) in (12) and integrating 
yields : 

(15) 

where b. is the width of the swept track at z = z,,. 
From (7) and (15) we have the relationship between 

sweeping frequency and. distance from the top of the 
condensing surface: 

1114 1114 _ 11 
n2 

VZ -vo - Tz 114 cY4(z - zo) (16) 
Cl c3 

wherev,=voatz=zo. 

From (14) and (15) we have the relationship between 
the effective maximum drop size and distance from the 
top of the condensing surface : 

rz 
*-11/3-p-1113 _ 11 

cl - .,&c-zo,. (17) 

From (11) and (17) we obtain the height-dependence 
of the volume condensation rate: 

il”CS 
v,“-v~‘=~-(z-20). 

Cl d 

(18) 

Since. for constant AT, the local heat-transfer coefficient 
is proportional to V,, its dependence on z takes the form 

h, = {A@-zo)+B)“” (19) 

where A and B are constants. 

COMPARISON WITH MEASUREMENTS 

Unfortunately, few data are available with which the 

above may be compared. 

Sweeping frequency 
The only measurements known to the author are 

those of Sugawara and Michiyoshi [19], who observed 
the sweeping frequency at three different heights on a 
vertical surface, for two different coolant flow rates. 
When these data are fitted by an equation of the form 

v:=4z+* (20) 

where 4 and $ were allowed to take different values 

for the two data sets, m was found to be 2.79, i.e. very 

close to the theoretical value of 1 l/4 [see equation (16)]. 
Equation (16) may be simplified using the values of 

the constants found in Appendix A to give: 

from (17) and (18) 

= 1 and =l 

Using these approximations and the value of z. from 

Appendix A, we obtain: 

vi =;(4.67(;)+1.2)1i’l (22) 

and using ?a = 1 mm, 

v; = (2)1.67(&j+ 1.2j? (23) 

Equation (23) with values of V. found by least-squares 
fitting, is compared with the measurements in Fig. 2. 
Unfortunately the authors [19] do not give the con- 
densation rates for comparison with the values found 
for Vo. 

FIG. 2. Dependence of sweeping frequency on 
distance from top of condensing surface. Com- 
parison of measurements [19] with equation (23). 

Heat-transfer measurements 
Le Fevre and Rose [IS] made measurements at 

distances from the top of the condensing surface of 
25,28 and 102 mm and observed no height-dependence. 
Wenzel [20] made measurements at four different 
heights on a plate of total height 360mm and did not 
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report differences between the results obtained at dif- 
ferent locations. These results are in accord with the 
extremely weak dependence of heat-transfer coefficient 
on height indicated by equation (19). 

NUCLEATION SITE DENSITY 

A continuous distribution of drop sizes, such as that 
given by equation (1). cannot be used to calculate the 
number of drops of a given size but rather, the number 
of drops in a given size range. Thus equation (1) does 
not directly provide a value for the density of nucleation 
sites. However. if we can estimate the radius rP to 
which primary dropst grow, on average, before coalesc- 
ing, then equation (1) can be used to determine the 
number of primary drops. i.e. drops in the size range 
i, rp as well as the area available for these drops, i.e. 
the total area less that covered by all drops larger 
than yP. Thus we may obtain the number of primary 
drops per area available for them which, since each 
drop represents a nucleation site, gives the nucleation 
site density. For hemispheri~l drops equation (I), with 
m = l/3, gives 

which the radius of the smallest drops was around 
0.01um.Forr’=0.01um,(28)gives~=33.7x lO’“cm-“. 
The calculated and observed site densities are seen to 
be in good agreement, particularly when bearing in 
mind the uncertainty in the values of J; for instance, 
if the true value of A7’ were as little as 0.1 K lower 
than that reported [2,3]. then the value of i: would be 
in excess of 0.1 urn and the calculated nucleation site 
density about 3 x 108cm--‘. It is of interest to note 
that the above site densities are within a factor of about 
IO of the maximum possible values, i.e. for a uniform 
close-packed triangular array. For P having values of 
0.07pm and 0.01 urn the maximum site densities are 
5.9 x lO”cm- and 2.9 x IO” cm-’ respectively. 

The number of primary drops per area of condensing 
surface np is thus given by: 

‘l - S/J 
PIP = N(r)dr = q$$- ._ (25) 

The fraction of the total area available for these drops 
is, from (I), equal to (r,/?)“3. Hence, the nucleation 
site density is given by: 

rt, may be estimated as half the distance between 
neighbouring sites in a uniform triangular array. In the 
real case, primary drops will reach a radius larger than 
this estimate, before coalescing, in regions where sites 
have greater than average spacing and will undergo 
coalescence at a smaller radius where the sites are more 
closely packed than average. We thus estimate: 

From (26) and (27) we obtain 

p = 0.037/P. (28) 

Estimates of nucleation site density from optical 
microscope photographs [2,3] and from electron 
microscope photographs [14-161 have recently been 
obtained. Griffith and Graham [2,3] give values of 
2 x 10s cmb2 and 6 x 108cm-* for conditions for which 
F = 0.07)rm. Using this value of f, (28) indicates a site 
density of 7.5 x lo8 cm-‘. Tanasawa and co-workers 
found values exceeding 10’“cm-2 for conditions under 

?Drops which first form on bare surface and which have 
not undergone coalescence. 
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c, : 

c2: 

C3: 

n: 

APPENDIX A 

C~~s~eration of the Constants cl3 c2, c3, n and 20 

If falling drops are taken to be hemispherical then 
ct = n/12. 
Observation and theory (see Fig. 1) indicate that, for a 
given vapour-to-surface temperature difference and for 
a particular promoter, the product of the volume con- 
densation rate per area and the cube root of the 
effective maximum drop size is constant. Thus, while V, 
and iz both vary with distance down the condensing 
surface, the product ca = L’;i.!‘3 is not dependent on 2. 
For given values of AT and Kl,, c2 may be obtained 
from equation (30) of [I] or from experimental values 
of V’ and P,. if available. 
The dropgrowth model [7] can be used (see Appendix B) 
to show that the volume of adherent condensate per 
area of surface, immediately prior to sweeping, is equal 
to 0.384?:;, and hence 

K = 0.3842, v*. (Al) 

Comparing (A 1) with (13) gives c) = 2.6. 
For z < 10. drops are able to reach their maximum 
radius PO before beginning to slide. Since z0 is small, 
the radius of a falling drop at -_a is essentially equal 
to iO, thus, from (7): 

vg = 2nio (A2) 

and, from (A 1) : 

v, = 0.384&3 l’o. (A3) 

Then, from (AZ) and (A3): 

n = 1.3v&?;. (A4) 

With the assumptions that falling drops at zo have 
radius & and are hemispherical, a matter balance for 
the region above zD gives 

&cfQ = t&l fA5) 

where pr, is the mean volume condensation rate per 
area for the region above 20. Thus, from (A4) and (AS): 

(2) = 2.72(Z) PW 

and since zo is small V. or p0 and 

so z 2.72Po. (A7) 

APPENDIX B 

Rebates Between Lord sweeping Frequency, 
~axim~rn Drop Size and Condensation Rate 

The total volume of condensate on a small region im- 
mediately prior to sweeping may be found by summing the 
volumes of all “generations” of drops [7] at this instant. 
Drops of generation 0 have their maximum radius r*, and, 
for unit area, their total volume wO, is given by 

w* = $fFz (Bl) 

where the drops have been assumed hemispherical and 
wherefis the fraction of area covered, which is shown [7] 
to be equal to about 0.55. 

If successive generations are assumed to have their mean 
radius (all radii are equally probable), then, for unit total 
area, the volume of all drops of generation i(i > 0) is given by 

wi = fj?z$(l -l’)i (B2) 

where 7 is the ratio of the maximum radius of generation 
k+ 1 to the radius at a given instant of generation k. The 
value of y was found [7] to be 0.189. Thus, the total volume 
of condensate on unit area immediately prior to sweeping 
w, , is given by 

w, = :fFz i :p: 2 y’( 1 -f,i (83) 
i=t 

where m is the total number of generations. The series in 
(B3) converges so rapidly that the later generations con- 
tribute negligibly to the total volume and the sum to 
infinity can be used for We, thus 

034) 

and usingf = 0.55, y = 0.189, 

w, = 0.384F,. (B5) 

The local volume condensation rate per area V, is then 
given by 

v, = o.384qz v,. m 

NOUVEAUX ASPECTS DE LA THEORIE DE LA CONDENSATION EN GOUTTES 

R&nmb--La relation theorique qui lie le coefficient de transfert de chaIeur a la dimension maximale 
des gouttes [I] est introduite dans une nouvelle mCthode de calcuf qui fournit la frequence de balayage 
et le coefficient de transfert de chaleur en fonction de la distance sur la surface de condensation. Les 
resultats sont en accord satisfaisant avec les observations anterieures. On montre que l’influence de la 
hauteur sur le coefficient de transfert de chaleur est extremement faible. On montre egalement que la 
densite des points de nucleation peut &tre deduite dune equation pour la distribution des dimensions 
des gouttes [l] et que les valeurs obtenues sont en accord satisfaisant avec les mesures aux microscopes 

optique et Clectronique. 

WEITERE ASPEKTE DER THEORIE ZUR TROPF~NKONDENSAT~ON 

Z~amm~f~ung-Die theoretische Abh~gi~eit des W~e~~rgan~sk~ffizienten von der maximalen 
TropfengrtiBe [I] wird in ein neues Verfahren zur Berechnung der Abhangigkeit der Abrollfrequenz 
und des Warmetibergangskoeffizienten von der Laufliinge auf der Kondensationsflbhe eingefilhrt. Beide 
Ergebnisse stimmen in befriedigender Weise mit friiheren Beobachtungen iiberein. Die Abhiingigkeit des 
Wlrmetibergangskoeffizienten von der Laufliinge erweist sich als extrem gering. Es wird auBerdem 
gezeigt, da13 die Keimstellendichte aus einer Gleichung fiir die Verteilung der TropfengrBBe abgeleitet 
werden kann [I] und dal3 die so erhaltenen Werte gut mit den mit Licht- und Elektronenmikroskopen 

ermittelten MeBwerten iibereinstimmen. 
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&4JlbHEfiIUEE PA3BMTME TEOPMM KAIIEJlbHOR KOHJJEHCAQMM 

AmoTaum-B If0~0M pacrerHoh4 MeTone npencTaBneHa TeopeTwecKafl 3amcmocTb ~os@Qw 

~IleHTaTeIInOO6MeHaOTMaKCHMaJIbHOrO pa3MepaKaIInH[~],llOKa3bIBaIO~a~PaBllCHMOCTb'iaCTOTb, 

CHOCa II K03#j.Ni~HeHTa TennOO6MeHa OT paCCTO5iHItff BHH3 n0 IIOBepXHOCTL-4 KOHaeHCaL(HH. 06a 
~3)VIbTaTay.QOBneTBOpHTeJIbHOCO~naCj'EOTC~ C 6onee paHHWMB AaHHblMA. nOKa3aH0,'ITO JPBWCW- 

MOCTb K03+$lit@ieHTa Tennoo6MeHa OT BbICOTbI KalTnH KpafiHe Mana. nOKa3aHO TaKme, YTO FlnOT- 

HOCTb I(eHTpOB 06pa30BaHHSI IlY3bIpbKOB BbIBOAHTCR 13 ypaBHeHEi2 PaCQefleneHHR pa3MepOB 

KaIInH[l] A YTO IIOnyreHHbIe 3HaYeHUR YAOBneTBOpHTenbHO COrnaC)'tOTCR C naHHbIMW H3MepeHHti 

HaOnTHYeCKOM H 3JleKTPOHHOM MHKpOCKOIlaX. 


